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a b s t r a c t

In this paper a new cooperative collision-avoidance method for multiple, nonholonomic robots based
on Bernstein–Bézier curves is presented. The main contribution focuses on an optimal, cooperative,
collision avoidance for a multi-robot system where the velocities and accelerations of the mobile robots
are constrained and the start and the goal velocity are defined for each robot. The optimal path of each
robot, from the start pose to the goal pose, is obtained by minimizing the penalty function, which takes
into account the sum of all the path lengths subjected to the distances between the robots, which should
be larger than the minimum distance defined as the safety distance, and subjected to the velocities and
accelerations, which should be lower than the maximum allowed for each robot. The model-predictive
trajectory tracking is used to drive the robots on the obtained reference paths. The results of the path
planning, real experiments and some future work ideas are discussed.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Collision avoidance is one of themain issues in applications for a
wide variety of tasks in industry, human-supported activities, and
elsewhere. Often, the required tasks cannot be carried out by a sin-
gle robot, and in such a casemultiple robots are used cooperatively.
However, the use of multiple robots may lead to a collision if they
are not properly navigated. Collision-avoidance techniques tend
to be based on speed adaptation, route deviation by one vehicle
only, route deviation by both vehicles, or a combined speed and
route adjustment. When searching for the best solution to prevent
a collision many different criteria are considered: time delay, total
traveling distance or time, planned arrival time, etc. Our optimal-
ity criterion will be the minimum total traveling distance of all the
mobile robots involved in the task, subject to a minimum safety
distance between all the robots and subject to the velocity and ac-
celeration constraints of each mobile robot. The approach can be
adopted to include other utility functions as well as the limitations
in the optimality criterion.
In the literature many different techniques for collision avoid-

ance have been proposed. Some approaches proposed avoidance,
when a collision between robots is predicted, by stopping the
robots for a fixed period or by changing their directions. A combi-
nation of these techniques is proposed in [1,2]. The behavior-based
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motion planning of multiple mobile robots in a narrow passage is
presented in [3]. Intelligent learning techniqueswere incorporated
into neural and fuzzy control for mobile-robot navigation to avoid
a collision, as proposed in [4,5]. A Bézier-curve-based path plan-
ning and collision avoidance for a single robot is presented in [6].
Also, some adaptive techniques for mobile robots’ navigation have
appeared, as proposed in [7].
In our case we are dealing with cooperative collision avoid-

ance where all the robots are changing their paths cooperatively
to achieve the goal. The Bézier-curve-based path planning is used,
as in [6], but the optimal collision-safe trajectories are calculated
for a group of robots at the same time and not for just a single robot,
as in [6]. The collision-avoidance problem is formulated as an opti-
mization problem, where the required safety distances, maximum
velocities and accelerations of the mobile robots are constrained,
and the start and the goal velocity are defined for each robot. This
means that the proposed method can also be used as a subroutine
in a huge path-planning problem where intermediate points are
given along the searched path. Thewhole path is then composed of
partial paths with smooth position and velocity transitions in con-
necting intermediate points. The control of multiple mobile robots
to avoid collisions in a two-dimensional free-space environment
is separated into two tasks: the path planning for each individual
robot to reach its goal pose as fast as possible, and the trajectory-
tracking control to follow the optimal path.
The trajectory-tracking task focuses on a controller design that

will ensure the perfect trajectory tracking of the realmobile robots.
Several controllers were proposed for mobile robots with non-
holonomic constraints and an extensive review of nonholonomic
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control problems can be found in [8]. In trajectory-tracking con-
trol a reference trajectory is usually obtained by using a reference
robot; therefore, all the kinematics constraints are implicitly con-
sidered by a reference trajectory. From the reference trajectory
a feed-forward system of inputs combined with a feedback con-
trol law are mostly used [9–11]. Lyapunov-stable, time-varying,
state-tracking control laws were pioneered by [12,13]. Stabiliza-
tion to the reference trajectory requires a nonzero motion con-
dition. Many variations and improvements to this state-tracking
controller followed in subsequent research [14,15]. for example
a tracking controller obtained with input–output linearization is
used in [9], a saturation feedback controller is proposed in [16] and
a dynamic feedback linearization technique is used in [10].
In the field of mobile robotics predictive approaches to path

tracking seem to be very promising, because the reference trajec-
tory is known beforehand. However, the solution of the control
problem is normally obtained by aminimization of some cost func-
tion. In [17] a generalized predictive control is chosen to control the
mobile robot, minimizing the quadratic cost function. A general-
ized predictive controller using the Smith predictor to copewith an
estimated system time delay is presented in [18]. In [19] a model-
predictive control based on a linear, time-varying description of
the system is used. The multi-layer, neural-network, predictive-
controller scheme to a path-tracking problem is proposed in [20].
The proposed reference-tracking control is based on a predic-

tion, where the main idea of the control law is to minimize the
difference between a future trajectory following the errors of the
robot and the reference path. The main advantage of the proposed
predictive controllers is an explicitly obtained analytical control
law that enables fast, real-time implementations.
The paper is organized as follows. In Section 2 the problem is

stated. The concept of path planning is shown in Section 3. The idea
of optimal collision avoidance for multiple mobile robots based on
Bézier curves is discussed in Section 4. In Section 5 the proposed
model-predictive controller is derived. The experimental results of
the obtained collision-avoidance control are presented in Section 6
and the conclusion is given in Section 7.

2. Statement of the problem

The collision-avoidance control problem for multiple, nonholo-
nomic mobile robots is proposed in a two-dimensional, free-space
environment. Other static obstacles in the environment can be
treated as motionless robots or as additional constraints in the
optimization problem, which is presented in Section 4. The sim-
ulations and experiments were performed on small, two-wheel,
differentially driven mobile robots with dimensions 7.5 × 7.5 ×
7.5 cm. The architecture of our robots has a non-integrable con-
straint in the form ẋ sin θ − ẏ cos θ = 0, resulting from the as-
sumption that the robot cannot slip in a lateral direction where
q(t) = [x(t) y(t) θ(t)]T are the generalized coordinates, as de-
fined in Fig. 1. The kinematics model of the mobile robot is

q̇(t) =

[cos θ(t) 0
sin θ(t) 0
0 1

][
v(t)
ω(t)

]
(1)

where v(t) and ω(t) are the tangential and angular velocities of
the platform. During low-level control the robot’s velocities are
bounded within the maximum allowed velocities, which prevents
the robot from slipping.
The danger of a collision between multiple robots is avoided by

determining the proper robot paths that fulfill certain criteria. The
reference path of each robot, from the start pose to the goal pose,
is obtained by minimizing the penalty function, which consists of
the robots’ traveling times as well as the required safety distance
and the maximum velocity and acceleration constraints.
Fig. 1. The generalized coordinates of the mobile robot.

3. Path planning based on Bernstein–Bézier curves

Bézier curves were first published by Pierre Bézier in 1962 for
designing the shape of automobile bodies. These parametric curves
are a very important tool for modeling smooth curves in computer
graphics and related fields as the curve is completely contained
within the convex hull of its control points [21]. By performing
operations on control points these curves can be translated and
rotated.
In path-planning applications these curves are convenient

because they can easily fit to the vehicle’s boundary conditions
(the start and end positions and the orientation) and can easily
be derived to obtain the velocity and acceleration profile that
is usually needed in path-tracking applications. The curvature of
the Bézier curve varies smoothly from the starting point to the
end point because of its continuous higher-order derivatives. The
Bézier curve passes through the start and the final control point,
but not through intermediate control points, which defines the
start and the final orientation and the shape of the curve. The latter
property is convenient in obstacle-avoidance applications.
Given a set of control points P0, P1, . . . , Pb, the corresponding

Bernstein–Bézier curve (or Bézier curve) is given by

r(λ) =
b∑
i=0

Bi,b(λ)pi

where Bi,b(λ) is a Bernstein polynomial, λ is a normalized time
variable (λ = t/Tmax, 0 ≤ λ ≤ 1) and pi, 0 = 1, . . . , b stands
for the local vectors of the control point Pi (pi = Pixex + Piyey,
where Pi =

(
Pix , Piy

)
is the control point with the coordinates Pix

and Piy , and ex and ey are the corresponding base unity vectors).
The absolute maximum time Tmax is the time needed to travel the
path between the start control point and the goal control point. The
Bernstein–Bézier polynomials, which are the base functions in the
Bézier curve expansion, are given as follows:

Bi,b(λ) =
(
b
i

)
λi (1− λ)b−i , i = 0, 1, . . . , b

and have the following properties: 0 ≤ Bi,b(λ) ≤ 1, 0 ≤ (λ) ≤ 1
and

∑b
i=0 Bi,b = 1.

The Bézier curve always passes through the first and last control
points and lies within the convex hull of the control points. The
curve is at a tangent to the vector of the difference p1 − p0 at the
start point and to the vector of the difference pb − pb−1 at the goal
point [21]. A desirable property of these curves is that a curve can
be translated and rotated by performing these operations on the
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control points. The undesirable properties of Bézier curves are their
numerical instability for large numbers of control points, and the
fact that moving a single control point changes the global shape of
the curve. The former is sometimes avoided by smoothly patching
together low-order Bézier curves.
The properties of Bézier curves are used in path planning for

nonholonomic mobile robots. Their useful property is the tangen-
tiality at the start and at the goal points, and the fact that moving
a single control point changes the global shape of the curve. Let
us assume the starting pose of the mobile robot is defined in the
generalized coordinates as q0 = [x0, y0, θ0]T and the velocity in
the start pose as v0. The goal pose is defined as qb = [xb, yb, θb]T
with the velocity in the goal pose as vb, where b stands for the or-
der of the Bézier curve. This means that the robot starts in position
P0(x0, y0)with orientation θ0 and velocity v0 and has a goal defined
by the position Pb(xb, yb), the orientation θb and the velocity vb.
Let us define five control points, P0, P1, P2, P3 and P4, which

uniformly define the fourth-order Bézier curve. The control points
P1(x1, y1) and P3(x3, y3) are defined to fulfill the velocity and
orientation requirements in the path. The need for flexibility of
the global shape and the fact that moving a single control point
changes the global shape of the curve imply the introduction of
the control point denoted as P2(x2, y2). By changing the position
of the point P2 the global shape of the curve changes. This means
that having in mind the flexibility of the global shape of the curve
and the start and the goal pose of the mobile robot, the path can
be planned by four fixed points and one variable point. The Bézier
curve is now defined as the sequence of points P0, P1, P2, P3 and P4
in Fig. 2, where D stands for the distance between the start and the
goal control point. The Bernstein polynomials of the fourth order
(Bi,b, i = 0, . . . , b, b = 4), and the control points define the curve
as follows:

r(λ) = B0,4p0 + B1,4p1 + B2,4p2 + B3,4p3 + B4,4p4 (2)

or

r(λ) = (1− λ)4 [x0 y0]T + 4λ (1− λ)3 [x1 y1]T

+ 6λ2 (1− λ)2 [x2 y2]T + 4λ3 (1− λ) [x3 y3]T

+ λ4 [x4 y4]T . (3)

The control point P2 will be defined using the optimization, and
the control points P1 and P3 are defined from the boundary velocity
conditions. In the case of a large number of robots or obstacles an
additional variable control point (or more) can be added to enable
a more demanding curve shape with several turns. The number of
control points can also be a variable, starting with a single one, and
then increasing the number of them until progress is made in the
optimization.
Let us therefore define the velocity as the derivation of the path

vector r(λ) according to the normalized time λ as follows:

v(λ) =
dr(λ)
dλ
=

b−1∑
i=0

b
(
pi+1 − pi

)
Bb−1,i (4)

in the normalized time λ. In the case of the fourth-order (b = 4)
curve, the velocity becomes:

v(λ) = 4 (p1 − p0) B3,0 + 4 (p2 − p1) B3,1
+ 4 (p3 − p2) B3,2 + 4 (p4 − p3) B3,3. (5)

The velocity vectors in the start position (λ = 0) and in the goal
position (λ = 1) then become:

v(0) = 4p1 − 4p0
v(1) = 4p4 − 4p3. (6)

This means that the vectors to the control points p1 and p3 are
Fig. 2. The Bézier curve.

defined as follows:

p1 = p0 +
1
4
v(0)

p3 = p4 −
1
4
v(1). (7)

The goal velocity vector needs to be constrained if we want to ar-
rive in the goal point with the required velocity. Moreover, the
shape of path depends on the goal velocity (a higher velocitymeans
a larger curve radius). If, however, the goal velocity is not pre-
scribed, then the control point P3 can be an additional curve-shape
tuning parameter.
According to the orientation of the robot in the start and goal

positions θs and θg , and given the start and required tangential
velocities of the robot v0 and v4, the velocity vector can be written
in the x and y components as follows:

v(0) =
[
vx(0) vy(0)

]T
= [v(0) cos θ0 v(0) sin θ0]T

v(1) =
[
vx(1) vy(1)

]T
= [v(1) cos θ4 v(1) sin θ4]T . (8)

Using Eqs. (7) and (8), the control points P1 and P3 are uniformly
defined. The only unknown control point remains P2, which will
be defined by optimization to obtain the optimal path that will be
collision-safe.

4. Optimal collision avoidance based on Bernstein–Bézier
curves

In this subsection a detailed presentation of cooperative, mul-
tiple-robots, collision avoidance based on Bézier curves will be
given, by taking into account the velocity constraints of the mobile
robots. Let us assume the number of robots equals n. The ith robot
is denoted as Ri and has a start position defined as P0i (x0i, y0i) and a
goal position defined as P4i (x4i, y4i). The normalized time variable
of the ith robot is denoted as λi = t/Tmaxi , where Tmaxi stands for
the absolute maximum time of the ith robot. The reference path
will be denoted by the Bézier curve ri(λi) = [xi(λi), yi(λi)]T. In
Fig. 3 a collision avoidance for n = 2 is presented for reasons of
simplicity.
The safety margin to avoid a collision between two robots is,

in this case, defined as the minimum necessary distance between
these two robots. The distance between the robot Ri and Rj is
rij(t) = |ri(t) − rj(t)|, i = 1, . . . , n, j = 1, . . . , n, i 6= j.
By defining the minimum necessary safety distance as ds, the
following condition for collision avoidance is obtained: rij ≥
ds, 0 ≤ λ ≤ 1, i, j. Fulfilling this criterion means that the robots
will never meet in the same region defined by a circle with radius
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Fig. 3. Collision avoidance based on Bernstein–Bézier curves.

ds, which is called a non-overlapping criterion. At the same time
we would like to minimize the sum of the traveled paths si of all
the robots. The length of the path at the normalized time si(λi)
is defined as si(λi) =

∫ λi
0 vi(λi)dλi, where vi(λi) stands for the

tangential velocity of the ith robot in the normalized variable λi

vi(λi) = |ṙ(λi)| =
(
ẋ2i (λi)+ ẏ

2
i (λi)

) 1
2

where ẋi(λi) stands for
dxi(λi)
dλi

and ẏi(λi) for
dyi(λi)
dλi
.

To define a feasible reference path that will be collision-safe
and will satisfy the maximum velocity vmaxi and the maximum
acceleration amaxi of the mobile robot, the real time should be
introduced. The relationship between the tangential velocity and
acceleration in normalized time framework and the real tangential
velocity and the acceleration is the following

vi(t) =
1
Tmaxi

vi(λi), ai(t) =
1
T 2maxi

ai(λi).

The length of the path of the robot Ri from the start control point
to the goal point is now calculated as:

si =
∫ 1

0

(
(ẋ2i (λi))+ ẏ

2
i (λi)

) 1
2 dλi

Assuming that the start P0i, the goal P4i, and the P1i and P3i control
points are known, the global shape and length of each path can
be optimized by changing the flexible control point P2i and the
maximum travel time Tmaxi as well. By varying Tmaxi the velocity
profile of the planned path is changed accordingly. The collision-
avoidance problem is now defined as an optimization problem, as
follows:

minimize
n∑
i=1

si

subject to
ds − rij(t) ≤ 0, ∀i, j, i 6= j, 0 ≤ t ≤ max

i
(Tmaxi)

vi(t)− vmaxi ≤ 0, ∀i, 0 ≤ t ≤ maxi
(Tmaxi)

ai(t)− amaxi ≤ 0, ∀i, 0 ≤ t ≤ maxi
(Tmaxi).

(9)

The minimization problem is called an inequality optimization
problem. The methods using penalty functions transform a con-
strained problem into an unconstrained problem. The constraints
are placed into the objective function via the penalty parameter in
such a way as to penalize any violation of the constraints. In our
case the following penalty function should be used to have an un-
constrained optimization problem
minimize(P2,Tmax) F =
∑
i

si + c1
∑
ij

max
ij

(
0, 1/rij(t)− 1/ds

)
+ c2

∑
i

max
i

(
0, vi(t)− vmaxi

)
+ c3

∑
i

max
i

(
0, ai(t)− amaxi

)
,

i, j, i 6= j, 0 ≤ t ≤ max
i
(Tmaxi) (10)

where c1, c2 and c3 stand for large scalars to penalize the violation
of the constraints and the solution of the minimization problem
minP2 F is a set of n control points P2 = {P21, . . . , P2n} and Tmax
is a set of n maximum times Tmax = {Tmax1 , . . . , Tmaxn}. Choosing
higher values of ci increases the penalization of any constraint vio-
lation. If a particular ci is higher than the others then this constraint
has a higher priority. Each optimal control point P2i, i = 1, . . . , n
uniformly defines one optimal path, which ensures collision avoid-
ance in the sense of a safety distance andwill be used as a reference
trajectory for the ith robot and will be denoted as ri(λ). The opti-
mal solution is also subjected to the time, because the velocities
and accelerations of the robots are also taken into account in the
penalty function (10).

5. Path tracking

The previously obtained optimal collision-avoidance path for
the ith robot is defined as rri(t) = [xri(t), yri(t)]T , i = 1, . . . , n.
In this section the development of a predictive path-tracking con-
troller [22] is presented. The path-tracking control forces the robot
to precisely follow the reference trajectory. Nevertheless, some
small tracking errors may appear, which may in some extreme
situations cause a violation of the safety distance constraint. There-
fore, the penalty function (10) also includes constraints on the
reference path velocity and the acceleration profile, which must
always be lower than the robot’s capabilities. So a planned refer-
ence path togetherwith properly designed predictive control guar-
antees good trajectory-tracking performance. Considering these
constraints the avoidance problem is decoupled, meaning that the
trajectory planning is treated separately from the trajectory-track-
ing execution phase. This step significantly reduces the computa-
tional complexity of the path-planning optimization. Additionally,
the safety distance can be extended to take a precaution. To im-
prove the robustness of the path-tracking control in the case of
large sensor noise, the safety distance could be extended accord-
ing to the estimated sensor-noise standard deviation. In this work
path-tracking control is realized as the sum of the feed-forward
and feedback controls. The feed-forward control for the ith robot
is calculated from a feasible reference path rri(t) = [xri(t), yri(t)]T.
The feed-forward control inputs vri(t) and ωri(t) are derived using
a kinematic model (1). The tangential velocity vri(t) is calculated
as follows

vri(t) =
(
ẋ2ri(t)+ ẏ

2
ri(t)

) 1
2 . (11)

The tangent angle of each point on the path is

ωri(t) =
ẋri(t)ÿri(t)− ẏri(t)ẍri(t)

ẋ2ri(t)+ ẏ
2
ri(t)

= vri(t)κ(t) (12)

where κ(t) is the path curvature. The necessary condition in the
path-design procedure is a twice-differentiable path and a nonzero
tangential velocity vri(t) 6= 0. If for some time t the tangential ve-
locity is vri(t) = 0, the robot rotates at a fixed point with the an-
gular velocity ωri(t) calculated from an explicitly given θri(t).
The feedback control law is derived from a linear, time-varying

system obtained by an approximate linearization around the
trajectory. The obtained linearization is shown to be controllable
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Fig. 4. Robot-following error transformation.

as long as the trajectory does not come to a stop, which implies
that the system can be asymptotically stabilized by smooth, time-
varying, linear or nonlinear feedback [13]. The tracking error
e(t) = [e1(t) e2(t) e3(t)]T of amobile robot expressed in the frame
of the real robot reads

e =

[ cos θ sin θ 0
− sin θ cos θ 0
0 0 1

]
(qri − q). (13)

In Fig. 4 the reference robot ideally follows the reference path,
but the real robot has some error when following the reference
trajectory. Therefore, the control algorithm should be designed to
force the robot to follow the reference path precisely.
Considering the robot kinematics (1) and the derived relations

(13) the following kinematics model is obtained

ė =

[cos e3 0
sin e3 0
0 1

][
vri
ωri

]
+

[
−1 e2
0 −e1
0 −1

]
u (14)

where u = [v ω]T is the velocity input vector and vri and ωri
are already defined in (11) and (12). The robot input vector u
is further defined as the sum of the feed-forward and feedback
control actions (u = uF+uB) where the feed-forward input vector,
uF , is obtained by a nonlinear transformation of the reference
inputs uF = [vri cos e3 ωri]

T and the feedback input vector, is
uB = [uB1 uB2 ]

T, which is the output of the controller defined in
Section 5.1.
Using the relation u = uF +uB and rewriting (14) results in the

following tracking-error model

ė =

[ 0 ω 0
−ω 0 0
0 0 0

]
e+

[ 0
sin e3
0

]
vri +

[
−1 0
0 0
0 −1

]
uB. (15)

Furthermore, by linearizing the error dynamics (15) around the
reference trajectory (e1 = e2 = e3 = 0, uB1 = uB2 = 0) the
following linear model results

ė =

[ 0 ωri 0
−ωri 0 vri
0 0 0

]
e+

[
−1 0
0 0
0 −1

]
uB (16)

which in the state-space form is ė = Ace + BcuB. According to
Brockett’s condition [23] a smooth stabilization of the system (1)
or its linearization is only possible with time-varying feedback.
In the following the obtained linear model is used in the derived
predictive control law.

5.1. Model-predictive control based on a robot tracking-error model

To design the controller for trajectory tracking the system (16)
will be written in discrete-time form as

e(k+ 1) = Ae(k)+ BuB(k)
whereA ∈ Rn×Rn, n is the number of state variables, B ∈ Rn×Rm
and m is the number of input variables. The discrete matrix A and
B can obtained as follows
A = I+ AcTs, B = BcTs (17)

which is a good approximation during a short sampling time Ts.
The idea of the moving-horizon control concept is to find

the control-variable values that minimize the receding-horizon,
quadratic cost function (in a certain interval denotedwith h) based
on the predicted robot-following error:

J(uB, k) =
h∑
i=1

εT(k, i)Qε(k, i)+ uTB(k, i)RuB(k, i) (18)

where ε(k, i) = eri(k+ i)− e(k+ i|k) and eri(k+ i) and e(k+ i|k)
stands for the reference robot-following trajectory and the robot-
following error, respectively, and Q and R stand for the weighting
matrices, where Q ∈ Rn × Rn and R ∈ Rm × Rm, with Q ≥ 0 and
R ≥ 0.

5.1.1. Output prediction in the discrete-time framework
In the moving time frame the model output prediction at the

time instant h can be written as:

e(k+ h|k) = Πh−1j=1 A(k+ j|k)e(k)

+

h∑
i=1

(
Πh−1j=i A(k+ j|k)

)
B(k+ i− 1|k)uB(k+ i− 1)

+ B(k+ h− 1|k)uB(k+ h− 1). (19)

Defining the robot-tracking, prediction-error vector

E∗(k) =
[
e(k+ 1|k)T e(k+ 2|k)T . . . e(k+ h|k)T

]T
where E∗ ∈ Rn·h for the whole interval of observation (h) and the
control vector

UB(k) =
[
uTB(k) u

T
B(k+ 1) . . .u

T
B(k+ h− 1)

]T
and

Λ(k, i) = Πh−1j=i A(k+ j|k)
the robot-tracking, prediction-error vector is written in the form

E∗(k) = F(k)e(k)+ G(k)UB(k) (20)

where

F(k) = [A(k|k) A(k+ 1|k)A(k|k) . . .Λ(k, 0)]T , (21)

and

G(k) =


g11 0 · · · 0

g21 g22 · · ·
...

...
...

. . .
...

gn1 gn2 · · · gnh

 (22)

g11 = B(k|k), g21 = A(k+ 1|k)B(k|k)
g22 = B(k+ 1|k), gn1 = Λ(k, 1)B(k|k)
gn2 = Λ(k, 2)B(k+ 1|k), gnh = B(k+ h− 1|k)
and F(k) ∈ Rn·h × Rn, G(k) ∈ Rn·h × Rm·h.
The objective of the control law is to drive the predicted robot

trajectory as close as possible to the future reference trajectory,
i.e., to track the reference trajectory. This implies that the future
reference signal needs to be known. Let us define the reference
error-tracking trajectory in state-space as

eri(k+ i) = Airie(k) (23)

for i = 1, . . . , h. This means that the future control error should
decrease according to the dynamics defined by the referencemodel
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matrix Ari. Defining the robot reference-tracking-error vector

E∗ri(k) =
[
eri(k+ 1)T eri(k+ 2)T . . . eri(k+ h)T

]T
where E∗ri ∈ Rn·h for the whole interval of the observation (h) the
following is obtained

E∗ri(k) = Frie(k), Fri =
[
Ari A2ri . . .A

h
ri

]T
(24)

and Fri ∈ Rn·h × Rn.

5.1.2. Control law
The idea of MPC is to minimize the difference between the

predicted robot-trajectory error and the reference robot-trajectory
error in a certain predicted interval.
The cost function is, according to the above notation, now wri-

tten as

J(UB) =
(
E∗ri − E

∗
)T Q (E∗ri − E∗)+ UTBRUB. (25)

The control law is obtained by minimization ( ∂ J
∂UB
= 0) of the cost

function and becomes

UB(k) =
(
GTQG+ R

)−1
GTQ (Fri − F) e(k) (26)

where

Q =


Q 0 · · · 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

 , R =


R 0 · · · 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R

 . (27)

This means that Q ∈ Rn·h × Rn·h and R ∈ Rm·h × Rm·h. Let us
define the firstm rows of thematrix

(
GTQG+ R

)−1
GTQ (Fri − F) ∈

Rm·h × Rn as Kmpc . Now the feedback control law of the model-
predictive control is given by

uB(k) = Kmpc · e(k) (28)

with Kmpc ∈ Rm × Rn.

6. Experimental results

In this section the path-planning results of the optimal, co-
operative, collision-avoidance strategy between three real mobile
robots is shown and the experimental results obtained on a real
platform using model-predictive, trajectory-tracking control are
given. The studywasmade to elaborate possible use in the case of a
realmobile-robot platform. In a real platformwe are facedwith the
limitation of control velocities and accelerations. Additional details
about the real set-up and videos of the experiments are available
at our website [24].

6.1. Case study for three mobile robots

The maximum allowed tangential velocities of the mobile
robots are vmaxi = 0.8 m/s and the maximum allowed accelera-
tions are amaxi = 0.5 m/s

2, where i = 1, 2, 3.
The starting pose of the first mobile robot R1 in generalized

coordinates is defined as q01 =
[
0.2, 1.4,−π

4

]T and the goal pose
as q41 =

[
1.4, 0.2,−π

4

]T. The boundary velocities of the first
mobile robot are the start tangential velocity v1(0) = 0.40 m/s
and the goal tangential velocity v1(Tmax1) = 0.4 m/s. The second
robot R2 starts in q02 =

[
1.4, 0.2, 3π4

]T
and has the goal pose

q42 =
[
0.2, 1.4, 3π4

]T
. The boundary velocities of the second

mobile robot are the start tangential velocity v2(0) = 0.4 m/s
and the goal tangential velocity v2(Tmax2) = 0.5 m/s. The third
Fig. 5. The paths of the collision-avoiding robots R1 , R2 and R3 .

Fig. 6. The distances r12 , r13 , r23 between the robots R1 , R2 and R3 .

robot R3 starts in q03 =
[
0.2, 0.2, π4

]T and has the goal pose
q43 =

[
1.4, 1.4, π4

]T. The boundary velocities of the third mobile
robot are the start tangential velocity v3(0) = 0.4m/s and the goal
tangential velocity v3(Tmax3) = 0.4 m/s. The x and y coordinates
are defined inmeters. The safety distance is defined as ds = 0.35m.

The optimal set P2 can be found by using one of the uncon-
strained optimization methods, but the initial conditions are very
important. In these experiments the unconstrained, nonlinear,
NelderMead simplex, direct-search, optimization method is used,
which is implemented in the Matlab function fminsearch. The op-
timization should be started with initial parameters that ensure a
feasible solution. We are optimizing the total sum of all the path
lengths that are subjected to certain conditions based on the safety
distances, velocities and accelerations of the robots. The velocity
condition implies the implementation of the maximum time for
each robot into the optimization routine. This implies that the ini-
tial set P2 will be defined as

P2 = {(x21, y21), (x22, y22), (x23, y23)}

where x2i and y2i are defined as follows:

x2i =
x0i + x4i
2

, y2i =
y0i + y4i
2

, i = 1, 2, 3. (29)

The initial maximum times are defined as Tmaxi = 5 s (i = 1, 2, 3)
to fulfill the maximum velocity constraints. The penalty function
(10) parameters are ci = 100 (i = 1, 2, 3). The obtained results
of the optimization routine are the following P21(1.61, 0.70),
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Fig. 7. The real velocities of the avoiding robots R1 , R2 and R3 .

Fig. 8. The real accelerations of the avoiding robots R1 , R2 and R3 .

P22(0.97, 0.02), P23(0.63, 1.10) and Tmax1 = 4.5974 s, Tmax2 =
4.5973 s and Tmax3 = 4.5973 s. The minimum value of the penalty
function F is 5.2728.
The simulated positions of all three robots (R1, R2 and R3) that

are cooperatively avoiding a collision are shown in Fig. 5. Robot
R1 starts from the upper left corner and finishes in the lower right
corner; robot R2 starts from the lower right and finishes in the
upper left corner; and robot R3 starts from the lower left and
finishes in the upper right corner. Obviously the paths of these
robots cross. The robots (the square shapes on the trajectories
in Fig. 5) are drawn each tenth sample time to illustrate their
progress during the experiment. It is dear that the robots adjust
their velocity profiles as well as their trajectories in order to fulfill
the design constraints (ds, vmaxi and amaxi ).
In Fig. 6 the distances between the mobile robots are shown. It

is also clear that all the distances (r12, r13, r23) satisfy the safety
distance condition. They are always larger than the prescribed
safety distance ds.
The real tangential velocity profiles of the avoiding robots R1,

R2 and R3 are given in Fig. 7. It is clear that the velocity profiles of
all three robots fulfill the boundary velocity requirements and the
allowedmaximum velocity conditions. The acceleration profiles of
the robots R1, R2 and R3 are given in Fig. 8. All the accelerations
fulfill the allowed maximum acceleration conditions.
In the following, Figs. 9–11, some more demanding scenarios

are shown. In Fig. 9 the robots’ starting poses are q01 =[
0.4, 0.2, π2

]T, q02 = [
0.7, 0.2, π2

]T and q03 = [
1, 0.2, π2

]T and
the goal poses are q41 =

[
1.4, 1.4, π4

]T, q42 = [
1.4, 0.2,−π

4

]T
and q43 =

[
0.2, 1.4, 3π4

]T
. All the robots have the same initial and

final velocity, 0.25 m/s, while the required constraints, i.e., safety
distance, maximum velocity and acceleration are ds = 0.25 m,
vmaxi = 0.8 m/s and amaxi = 0.5 m/s

2, respectively.
Another scenario is shown in Fig. 10, where the robots’ starting

poses are q01 =
[
0.2, 0.6, π4

]T, q02 = [
0.4, 0.4, π4

]T and q03 =[
0.6, 0.2, π4

]T and the goal poses are q41 = [1.4, 0.2, −π4 ]T, q42 =[
1.4, 1.4, π4

]T and q43 = [0.2, 1.4, 3π4 ]T. The required constraints,
initial and final velocities are the same as in the experiment shown
in Fig. 9.
If increasing the required safety distance in the experiment

from Fig. 10 to ds = 0.28 m (the maximum allowed for the initial
robot poses) the obtained paths are shown in Fig. 11. The calculated
paths are changed in order that they still obey the safety distance
requirements.
In more general situations the proposed collision-avoidance

algorithm always finds a solution that could be optimal or
suboptimal, depending on how realistic the requirements and
constraints are (safety distance, maximum allowed accelerations
and velocities). To avoid local suboptimal solutions different initial
sets for P2 need to be checked. An appropriate initial set for P2
can be obtained using relation (29). Nevertheless, the constrained
problem is always feasible, as long as the design constraints are
realistic.
As the proposed algorithm includes optimization it is compu-

tationally demanding and requires a fast computer to enable real-
time operation, and it becomes evenmore computationally intense
Fig. 9. The paths of the collision-avoiding robots R1 , R2 and R3 (left) and the distances r12 , r13 , r23 between them (right). The design constraints are ds = 0.25 m,
vmaxi = 0.8 m/s and amaxi = 0.5 m/s

2 .
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Fig. 10. The paths of the collision-avoiding robots R1 , R2 and R3 (left) and the distances r12 , r13 , r23 between them (right). The design constraints are ds = 0.25 m,
vmaxi = 0.8 m/s and amaxi = 0.5 m/s

2 .
Fig. 11. The paths of collision-avoiding robots R1 , R2 and R3 (left) and distances r12 , r13 , r23 among them (right). Design constraints are ds = 0.28 m, vmaxi = 0.8 m/s and
amaxi = 0.5 m/s

2 .
Fig. 12. The control of the collision-avoiding robots R1 , R2 and R3 (solid lines) on
the reference trajectories (dashed lines); real experiment.

if the number of robots is increased. In the presented examples
(Figs. 5–11) it took some 0.5 s to compute each experiment on a
Pentium IV 1.8 GHz Computer in the Matlab environment.
In Fig. 12 the results of the experiment (from Fig. 5) performed

on a small-sized real-robots platform (the size of each robot is
7.5 cm × 7.5 cm × 7.5 cm) is shown. It can be seen that the
robots’ initial postures q01, q02 and q03 have some initial pose error
(they are not on the planned trajectory). These initial errors were
introduced intentionally to demonstrate the operation of the de-
signed predictive controller. The predictive controller successfully
drives the robot to follow the reference trajectories, despite the
noise in the position (standard deviation of 2 mm) and orientation
measurements (standard deviation of 0.1 rad).

7. Conclusion

An optimal, cooperative, collision-avoidance approach based
on Bézier curves allows us to include different criteria in the
penalty functions. In our case the reference path of each robot,
from the start pose to the goal pose, is obtained by minimizing
the penalty function, which takes into account the sum of all the
path lengths subjected to the distances between the robots, which
should be larger than the minimum distance defined as the safety
distance, the maximum velocities of the robots and the maxi-
mum allowed accelerations of the robots. The model-predictive
trajectory-tracking control is used to control the robots on the ob-
tained reference paths. The predictive control law minimizes the
quadratic cost function consisting of tracking errors and control ef-
fort. The solution to the control is analytically derived, which en-
ables fast, real-time implementations. Future improvements will
focus on decreasing the computational time of the optimization by
a problem reformulation or by coding in C.
The proposed, cooperative, collision-avoidance method for

multiple nonholonomic robots based on Bézier curves and predic-
tive, reference tracking shows great potential and in the futurewill
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be implemented on a real, large-scale, mobile-robot, Pioneer 3-AT
platform.
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