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Abstract

This paper addresses the problem of verifying the discrete control logic that is
typically implemented by programmable controllers. Not only are the logical prop-
erties of the controller studied during verification, the behaviour of the overall con-
trolled system is also examined. An approach that combines the calculation of the
safety-oriented interlock controllers in terms of supervisory control theory (SCT),
the corresponding calculation of the admissible behaviour of the system, and the
specification of the desired system operation by Petri nets is proposed. A potential
deadlock in the controlled system is then verified by taking the admissible-behaviour
model as a process model. The analysis of the simultaneously operated supervisory-
control-based interlock controller and the Petri-net-based sequential controller is
performed with a C-reachability graph. The paper focuses on the calculation of the
graph, and the approach is illustrated with an example of a simple manufacturing
cell.
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controllers

1 Introduction

While the functionality of programmable logic controllers (PLCs) is contin-
uously expanding, discrete control logic remains the core of their operation.
For a long time, PLCs have been programmed in a rather intuitive way, using
specialised graphical programming languages, such as a ladder diagram [13].
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Recently, much attention has been given to formal methods and their applica-
tion in the design and verification of PLC programs. This is motivated by the
growing complexity of control problems, the demands for reduced development
times and the need to reuse existing software modules, on the one hand, and
the increasing demands of society for a better control of technological risks,
on the other [4,8].

Verification-based approaches deal with the formalization of the specifications
and verification of the program against the formal specification [7]. The pro-
gram passes the verification when the behaviour specified by the designer
satisfies a set of properties. The properties can be checked on the control
model only, or by considering a model (possibly a partial model) of the pro-
cess. The latter is a more realistic approach to verification, called model-based
verification [4].

To make the results of such a verification approach useful for the control, an
appropriate model of the process under control is needed; however, this is
not readily available in many cases. Different aspects of plant modelling for
the purpose of controller verification have been extensively studied in [6,14,5].
The approach presented there enables detailed and systematic modelling of
the controlled processes by employing a special modelling formalism.

In special cases, however, a suitable model for the verification can be obtained
by considering a multilevel control structure and adopting a partially con-
trolled plant on the lower level as a plant model for the verification of the
upper level. Such a two-level approach is proposed in our previous work [10],
and is further elaborated in this paper. In particular, such an approach can be
used in applications involving PLCs, where a large portion of the control code
is dedicated to safety measures, also called interlocks, and the corresponding
part of the logic is sometimes referred to as the locking controller [18]. Assum-
ing a two-stage approach, where the interlock logic is designed first and the
sequential part is then added on top of that, the admissible behaviour of the
plant imposed by the interlock logic can be adopted as a plant model for the
verification of the sequential part.

In the presented approach the interlock part of the control logic is synthesized
using supervisory control theory (SCT) [16,1]. The synthesis also gives a model
of the admissible behaviour of the process, i.e., the behaviour of the process
that complies with the given interlock specifications. The sequential part is
then designed using Petri nets [9], which are used in the sense of a formal
specification that is verified against the admissible model derived during the
interlock synthesis. The basic property of interest is the absence of deadlock. A
corresponding reachability-based analysis technique is proposed, which builds
a C-reachability graph and enables the detection of any potential deadlock
in the system that is controlled by a simultaneously operated supervisory-
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control-based interlock controller and a Petri-net-based sequential controller.

The motivation for the use of two modelling formalisms is twofold; firstly, the
supervisory control theory is well suited to the interlock design. SCT is es-
sentially safety-oriented, i.e., it enables the synthesis of a control policy that
prevents any undesired behaviour of the controlled plant. In most applications,
however, there are also requirements about the desired behaviour of the plant
that should be enforced by the controller. The SCT-based synthesis and im-
plementation of controllers that force the system to exhibit desired behaviour
is difficult, although some related results are reported in the literature [2,12].
Secondly, the Petri-net framework provides an intuitive way of modelling the
operation sequences, while the Petri-net-based supervisory control methods
are less elaborate, especially in terms of event feedback, and few synthesis
tools are available. The proposed combined approach exploits the advantages
of both frameworks. Compared to other model-based verification approaches
that are described in the literature (e.g., [3,6,17], see also survey papers [4,7],
and the references therein), the main advantage of the combined approach is
that it eliminates the need for an additional plant model for the purpose of
verifying the sequential controller. The corresponding model is derived auto-
matically during the interlock design stage.

The remainder of the paper is structured as follows. The proposed com-
bined synthesis/verification approach is introduced in Section 2. The relation
between admissible behaviour and the firing of transitions in the Petri-net
model of operational procedures is explained in detail. The proposed deadlock-
analysis technique is described in Section 3. The C-reachability graph is intro-
duced, the required properties of the graph are examined, and a corresponding
graph-calculation algorithm is presented. A simple example is given in Section
4 to illustrate the approach.

2 Combined synthesis/verification appproach

The aim of the verification is to answer the question as to whether a specifi-
cation model is correct. This is done by examining various properties of the
model, such as the stability, the absence of deadlocks, etc. In the presented
case, the investigation is limited to the study of a single property, i.e., a check
to ensure the Petri-net specification is not blocking the system operation.

The non-blocking property of a Petri net is traditionally regarded as the ab-
sence of deadlocks and closely related to the concept of liveness. A Petri net
is said to be live when it is possible to ultimately fire any transition of the
net by progressing through some firing sequence, starting from any marking
that is reachable from a given initial marking [9]. A live Petri net guarantees
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deadlock-free operation.

When examining the Petri-net specification of a logic controller, the property
of liveness is insufficient to ensure the non-blocking operation due to external
inputs and outputs and their interrelations. The liveness of a PN is a neces-
sary, but not sufficient, condition for the non-blocking operation of a related
controller.

To examine the possible blocking of the controller the relation between the
inputs and outputs must be taken into account. In other words, instead of
analysing the ’open-loop’ model of the controller a ’closed-loop’ model of the
control system has to be studied. Such an approach can be considered as a
model-based approach to verification, according to the classification in [4].

2.1 Modelling a process under control

The key to the success of such a verification approach is a suitable model of
the process under control. However, building such a model can be a difficult
and cumbersome task. But in certain cases models developed during the initial
stage of the control logic design can be used.

A two-stage approach to the design of the control logic is schematically shown
in Fig. 1. It is a simplified version of the multistage approach proposed in
[12]. One of the key points of the approach is that the specifications are split
into two parts. The first part involves the prevention of undesired behaviour.
It is composed of the so-called interlocks that implement measures to ensure
safety, co-ordinate sub-processes, etc. The second part deals with the sequen-
tial specification and defines the prescribed order of tasks. The sequencing
part of the control logic is synthesized only after the interlock part has been
designed. Besides greater modularity, this increases the flexibility of the pro-
posed solution since only the upper layer has to be redesigned when changes
to the system operation are required.

P r o c e s s

I n t e r l o c k
s u p e r v i s o r  1

I n t e r l o c k
s u p e r v i s o r  n

P r o c e d u r a l
c o n t r o l l e r

. . .
SS C n , E NSS C 1 , E N

S u p e r v i s e d  p r o c e s s
SS A ( m )

O p e r a t i n g  m o d e

Figure 1. Proposed control structure
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The set of interlock supervisors can be designed within the framework of su-
pervisory control theory. The result of the synthesis of the interlock part is a
model of the admissible behaviour, i.e., the model of all the possible event se-
quences in the controlled system that comply with the interlock specification.
This model can be used as an ’open-loop’ process model when designing the
sequencing part of the control logic. This part may be conveniently specified
by a Petri net, which is then verified in combination with the open-loop model.

In the combined approach, the evolution of the Petri net is driven by the
underlying layer of interlock control logic that is modelled as a finite state
machine. The link between the two representations are the input/output (I/O)
signals.

2.2 Events, I/O signals, and admissible behaviour

The supervisory control concept [16] deals with restrictions on the behaviour of
a discrete event system imposed by an external controller – a supervisor, acting
by disabling events. The set of events is partitioned into two disjoint subsets
– the controllable and uncontrollable events: Σ = Σc ∪ Σu, Σc ∩ Σu = ∅. The
uncontrollable events cannot be disabled. The supervisor is computed on the
basis of the open-loop system model and a specification model. The key issues
are the concept of controllability and the concept of the supremal controllable
sublanguage [1,20].

The feasible set of input/output (I/O) signal patterns in a supervised system
is defined by the supervisor S and is implicitly given by the discrete event
model of the supervised plant. This model can be given in the form of a
finite automaton, which is interpreted as a deterministic language generator
Ha = (X, Σ, δ, x0, Xm).

Here, X is a set of states, Σ is a set of symbols associated with events, δ :
X × Σ → X is a state-transition function and is in general a partial function
on its domain, x0 is the initial state and Xm is a set of marker states. A symbol
σi ∈ Σ is generated during every transition. A finite set of symbols is called
an event sequence. The language generated by G is L(G). It is interpreted as
the set of all the finite event sequences that can occur in the automaton. The
language marked by G is denoted by Lm(G) and consists of event sequences
that end in marker states. Such a generator is derived by the supervisory
control synthesis procedure as a model of admissible behaviour.

Let Σ∗ denote the set of all the finite sequences of elements of Σ, including the
empty sequence, and let st denote the concatenation of sequences s, t ∈ Σ∗.
A prefix closure of the language L ⊆ Σ∗ is then defined as L = {s ∈ Σ∗; ∃t ∈
Σ∗, st ∈ L}. The automaton is non-blocking if it is capable of reaching a
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marker state from any reachable state, i.e., Lm(G) = L(G).

As explained in [10], in the proposed approach the blocking is not considered
at this point, therefore Xm = X. The language L(Ha) = La generated by Ha

contains all the admissible event sequences.

An event σ ∈ Σ can be regarded either as an external event observed through
the change in the state of the corresponding I/O signal or it can be actively
triggered by the controller. In any case, a change in the controller input or
output signal state is associated with every event σ ∈ Σ. This will be denoted
by v′ = δv(v, σ) and u′ = δu(u, σ). The sets of the output and input signal
states are denoted as U := {u|u : A → {0, 1}} and V := {v|v : B → {0, 1}},
where A and B are the sets of controller output and input signals, respectively.
Next, the set of total states is defined as W := {w|w = (x, u, v)}.

Considering the event sequences that are generated by the model of the ad-
missible behaviour Ha a new total state automaton Hw = (W, Σ, ξ, w0,Wm) is
constructed, where W ⊆ X ×U ×V is as defined above, Σ is the set of events
comprising the admissible behaviour, and ξ is a new state-transition function,
defined as follows:

ξ(w, σ) =





(δ(x, σ), u′, v′) if δ(x, σ) defined

undefined if δ(x, σ) undefined
(1)

where w = (x, u, v), u′ = δu(u, σ) and v′ = δv(v, σ), as defined above. For
convenience, ξ is extended from the domain W×Σ to W×Σ∗ in the usual way.
The initial state is w0 = (x0, u0, v0) and all the states are marked Wm = W .
Note that L(Hw) = L(Ha) = La, which is evident from (1).

2.3 Specification of the operational procedures

Petri nets as a tool for modelling and the specification of manufacturing sys-
tems are described in a number of sources, such as [9,1]. A Place/Transition
Petri net can be described as a bipartite graph consisting of two types of nodes,
places and transitions. The nodes are interconnected by directed arcs. The
state of the system is denoted by the distribution of tokens (called marking)
over the places. For the purposes of simulation and possible implementation
by industrial controllers, the input/output interpretation can be added. One
of these extensions is a class of Petri nets called Real-Time Petri Nets (RTPNs)
[21]. Formally, a RTPN is defined as an eight-tupleN = (P, T, I, O, m0, D, Y, Z)
where

– P = {p1, p2, . . . , pk}, k > 0 is a finite set of places,
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– T = {t1, t2, . . . , tl}, l > 0 is a finite set of transitions (with P ∪ T 6= ∅ and
P ∩ T = ∅),

– I : P × T → N is a function that specifies the weights of arcs directed from
places to transitions,

– O : P ×T → N is a function that specifies the weights of arcs directed from
transitions to places,

– m : P → N is a marking, m0 is the initial marking,
– D : T → R+ is a firing time-delay function,
– Y : T → B is an input-signal function, where B is the set of Boolean

expressions on the set B ∪ A of input/output signals;
– Z : P → 2A×{0,1} is a physical output function, where A is the set of output

signals 1 .

In the following the paper deals only with safe RTPNs, i.e., m(p) ≤ 1,∀p ∈ P .
The output function of a place sets the related output signals to the specified
values when the place is marked.

2.4 RTPN control of a supervised discrete-event process

To enable a detailed analysis of the potential deadlock in a RTPN that is
controlling a process under the restriction of a discrete-event supervisor, the
firing rule of the RTPN must be defined. A firing rule from [21] is here adopted
with a slight modification.

In standard Petri-net theory the transition t ∈ T is said to be enabled if
m(p) ≥ I(p, t), ∀p ∈ •t. Here, •t ⊆ P denotes the set of places that are
inputs to the transition t ∈ T . This definition also holds for a RTPN, but
such a transition is called a state-enabled transition. The set of state-enabled
transitions of a RTPN under the marking m is Te(m) := {t|t is state enabled
under m}.

Next, a transition t ∈ T is defined as input enabled under an I/O state
(v, u) ∈ V ×U when eval(Y (t), v, u) = 1. The function eval(e, v, u) denotes an
evaluation of the Boolean expression e ∈ B by the given I/O state v, u. A set
of input-enabled transitions of a RTPN under I/O state v, u is Ti(v, u) := {t|t
is input enabled under v, u}.

A transition is defined as output enabled when all the preceding control ac-
tions have actually been executed. A transition t ∈ T is output enabled un-
der an output state u ∈ U when Z(p) = {(a1, i1), . . . , (an, in)} ⇒ u(aj) =

1 These definitions of input and output functions are slightly changed with respect
to [21] and [10].

7



ij, ∀(aj, ij) ∈ Z(p), ∀p ∈ •t. A set of output-enabled transitions of a RTPN
under output state u is To(u) := {t|t is output enabled under u}.

The firing rule of a RTPN can now be defined as follows:

i) a transition t ∈ T is enabled if it is state enabled, input enabled and output
enabled, i.e., t ∈ Te ∩ Ti ∩ To,

ii) an enabled transition may or may not fire, depending on the firing time-
delay function associated with it:
– a transition with a zero time delay fires immediately after being enabled,
– a transition with a non-zero time delay fires immediately after the de-

lay D(t) expires (the corresponding timer starts when the transition is
enabled),

iii) the firing of a transition is immediate and it removes a token from each of
the input places of the transition and adds a token to each of the output
places of the transition.

A no-concurrency firing setting is assumed, i.e., a single transition fires at a
time, and m[t〉m′ denotes that t can fire under m, resulting in m′.

Given Petri-net N and marking m, a marking m′ is said to be immediately
reachable, i.e., m′ ∈ R1(N ,m), if there exists a transition t such that t is state
enabled under m and its firing results in m′, i.e, m[t〉m′. A marking mk is
said to be reachable from a marking m0, i.e., mk ∈ R(N ,m0), if there exists
a sequence 〈m0m1 . . . mk〉 such that mi ∈ R1(N ,mi−1) for 0 < i ≤ k. The
notion of reachability can be extended by considering the input and output
signals of a RTPN:

Definition 1 Given a RTPN NR, marking m, input state v, and output state
u, marking m′ is said to be immediately IO-reachable under I/O state v, u,
i.e., m′ ∈ RIO

1 (NR,m, v, u), if there exists a transition t such that t is state
enabled, input enabled, and output enabled under m, v, and u, respectively,
and the firing of t results in the marking m′.

The paper is focused on the operation of a controller modelled by a RTPN
and acting on a discrete-event system Hw. Therefore, C-reachability (control-
reachability) is defined as follows:

Definition 2 Given a RTPN NR with marking m, and coupled to a discrete-
event system Hw, marking m′ is said to be immediately C-reachable under total
state w, i.e., m′ ∈ RC

1 (NR, m,Hw, w), when it is immediately IO-reachable
under I/O state v, u, where w = (x, u, v).

The admissible firing sequences define the C-reachability set RC(NR,m0, Hw)
of a RTPN NR coupled to Hw:
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Definition 3 Given a RTPN NR with initial marking m0, and coupled to a
discrete-event system Hw with initial state w0, marking m′ is said to be C-
reachable, i.e., m′ ∈ RC(NR,m0, Hw) if there exists a sequence 〈m0m1 . . . mk〉
such that mi ∈ RC

1 (NR,mi−1, Hw, wi−1) and wi−1 = ξ(w0, s); s ∈ La for 0 <
i ≤ k. By definition, m0 ∈ RC(NR,m0, Hw).

Hw is assumed to be in the initial state w0 when a corresponding RTPN is
marked by the initial marking m0. The changes of the input/output signal
state are driven by the evolution of the two models: the total state automaton
model of admissible behaviour of the plant and the RTPN model of operational
sequences.

Considering the notion of C-reachability the deadlock-free operation of a
RTPN controller can now be defined:

Definition 4 A RTPN system (NR,m0) coupled to Hw is deadlock-free when
for every C-reachable marking m ∈ RC(NR,m0, Hw) there exists a marking m′

that is immediately C-reachable from m, i.e., m′ ∈ RC
1 (NR,m, Hw, w), where

w = ξ(w0, s); s ∈ La, and La is the admissible behaviour.

3 Analysis of deadlock

To be able to analyse the existence or absence of deadlock in the RTPN con-
trolling a discrete-event process, a new kind of reachability graph is proposed
here that enumerates all the admissible event and transition sequences: the
C-reachability graph.

3.1 C-reachability graph

The nodes of the graph are pairs (m,w), where m is a marking of the RTPN,
while w is the state of the automaton Hw. The construction starts in the
initial state (m0, w0), where w0 = (x0, u0, v0). A set of feasible events is then
sought. This is a subset of the feasible events Γ(x0) of the automaton Ha.
More precisely, the set is composed of two subsets. One is the set of all the
events feasible at x0 and not generated by the RTPN. The other is the set of
events generated by the actions of the marked places of the RTPN and defined
by the output function Z, which are also feasible at x0.

Let ΣCTRL denote a set of events triggered by the RTPN, and ΣSP a set of
events that are not generated by the RTPN (ΣSP = Σ− ΣCTRL). Let ΣA(m)
denote the set of events generated by actions of the marked places of the
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RTPN. The set of feasible events ΣF at Ha in the state x and the RTPN
marked by m is then given by

ΣF (x,m) = Γ(x) ∩ (ΣSP ∪ ΣA(m)) (2)

Then a node (m0, wi) where wi = ξ(w0, σi) is added for ∀σi ∈ ΣF (x0,m0) and
the arc from (m0, w0) to (m0, wi) is labelled σi.

Next, the set of immediately C-reachable markings RC
1 (NR,m0, Hw, w0) is de-

termined. For every corresponding marking mi ∈ RC
1 (NR,m0, Hw, w0) a node

(mi, w0) is added to the graph and the arc from (m0, w0) to (mi, w0) is labelled
ti, where ti is the transition leading from m0 to mi. In the case of conflict-
ing transitions, all possible firing sequences are enumerated as in a standard
reachability analysis.

The procedure is repeated for every added node, and duplicate nodes of the
graph are merged. The procedure stops when there are no new nodes or all
the new nodes are duplicate nodes.

A new kind of reachability graph is derived in the described way . A set of
nodes is associated with every reachable marking and the transitions between
the nodes are of two types:

– the transitions of a RTPN connect the nodes associated with distinct mark-
ings,

– the transitions related to events in a model of admissible behaviour connect
the nodes associated with the same marking.

Since the derived graph includes the input and output events of a controller,
it is called the C-reachability graph of a RTPN controller. It should be noted
that only the ordering of events is considered, while the timing information of
a RTPN is omitted.

The resulting graph can be interpreted as an automaton where the transitions
of a RTPN are considered as additional events in the system. Such an automa-
ton is denoted as CG = (N, ΣCG, ζ, n0, Nm), where N ⊆ RC(NR,m0, Hw)×W
is a set of nodes in the graph, ΣCG ⊆ Σ ∪ T is the set of transition labels,
ζ : N × ΣCG → N is a transition function defined by the arcs of the graph,
n0 = (m0, w0) is the initial state, and Nm is the set of marker states.

It is important to note that since the construction is driven by a sequential
specification, only a small subset of possible I/O combinations is actually
enumerated in CG.

Finally, the C-reachability graph is used to analyse any potential blocking of
a controller. The following proposition is applied:
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Proposition 1 A control specification given as a RTPN system (NR,m0) with
the transition set T and acting on a discrete-event system Hw is deadlock free
if the corresponding C-reachability graph CG = (N, ΣCG, ζ, n0, Nm):

(i) contains at least one transition of the RTPN, i.e., one of those transitions
appears at least once as a label of an edge in the graph, ∃t ∈ T, n, n′ ∈
N,n′ = ζ(n, t), and

(ii) can be interpreted as a nonblocking automaton, given Nm = {n0}.

Proof: For a non-blocking automaton with Nm = n0, ∀s ∈ L(CG), ∃s′, ss′ ∈
L(CG), ζ(n0, ss

′) = n0. It is, therefore, clear that it can return to the initial
state from any reachable state. Consider now the case that the automaton is
in state n = (m,w), where m 6= m0. Clearly, if the automaton can return
to the initial state n0 = (m0, w0), there exists a firing sequence 〈mm′ . . .m0〉
with m′ ∈ RC

1 (NR,m, Hw, w). Next, the case when the automaton is in state
n = (m0, w) is considered. In this case the return to the initial state of the
automaton is insufficient for the RTPN being deadlock free, as the initial state
can be reached without a change in marking and consequently without firing a
single transition. But if ∃t ∈ T, n′ = ζ(n, t), for some n, n′ ∈ N there must also
exist m′ ∈ RC

1 (NR,m0, Hw, w), such that m0[t〉m′. Therefore, an immediately
C-reachable marking can be found for every reachable marking including m0,
which means the RTPN is deadlock free according to Def. 4.

There is often a need to extend the requirement for a control specification to
be deadlock free. It is also often required for all the parts of the sequential
behaviour to be eventually reachable. In terms of Petri-net terminology, this
requires any transition within the Petri net to eventually become enabled,
starting from any marking reachable from the initial marking. Such a Petri
net is live [9]. To adapt this notion to a sequential specification in terms of
the RTPN acting on a process under supervision, the following definition is
applied.

Definition 5 A RTPN system (NR,m0) with transition set T and coupled to
Hw is C-live when for every C-reachable marking m ∈ RC(NR,m0, Hw) any
transition t ∈ T will eventually be fired.

The C-liveness can also be checked from the C-reachability graph in a similar
way to the absence of deadlocks. The difference is that since any transition
must be eventually fired, all the transitions must appear in the C-reachability
graph. This is summarized in:

Proposition 2 RTPN system (NR,m0) with transition set T and coupled to
Hw is C-live if a corresponding C-reachability graph CG = (N, ΣCG, ζ, n0, Nm):

(i) contains all the transitions of the RTPN, i.e., ∀t ∈ T, ∃n, n′ ∈ N,n′ =
ζ(n, t)
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(ii) can be interpreted as a nonblocking automaton, given Nm = {n0}.

Proof: By construction, any node of CG maps to a reachable marking of
the RTPN. If all the transitions appear as the labels of the arcs of CG this
corresponds to the eventual firing of any transition from the initial marking.
If CG can return to the initial state from a given node, the firing sequence
can also continue to any other node of the CG, which means any transition of
the RTPN can eventually be fired, starting from every reachable marking.

Note, that in general, most of the spontaneous events are uncontrollable, in
the sense of supervisory control. In addition, most of the controlled events
are controllable. It should be noted, however, that this relationship between
spontaneous and uncontrollable events, on the one hand, and between con-
trolled and controllable events, on the other, is not strict. An uncontrollable
event σ1 ∈ Σu can be generated by the RTPN; therefore, σ1 ∈ ΣCTRL, e.g.,
the start of an emergency procedure, which must not be disabled. In contrast,
a controllable event σ2 ∈ Σc can be generated externally (σ2 ∈ ΣSP ), e.g.,
an operator request that may be blocked by the supervisor. All these situa-
tions are captured within the C-reachability graph and are taken into account
during an analysis of blocking.

3.2 Calculation of the C-reachability graph

To further illustrate the procedure of composing the graph a sketch of the
corresponding calculation procedure is given. The graph is represented as
CG = (N,A), where N is a set of nodes in the form of ordered pairs (m,w),
as described above, and A is a set of arcs, given as A ⊆ N × (Σ∪PN.T )×N .
An arc between the nodes n1 and n2 is denoted (n1, e, n2), and e ∈ Σ∪PN.T
is either an I/O event or a Petri-net transition. The procedure is summarized
in Algorithm 1.

Algorithm 1:

w := (x0, u0, v0);
NCG := (m0, w); (* a node related to the initial marking of a RTPN, the
initial state of the automaton Hw, and the initial state of the I/O signals
*)
CG.N := {NCG};
CG.A := ∅;
RSET := {m0};
(* events not triggered by RTPN *)
ΣSP := spontaneous(Ha, PN);
U := {NCG}; (* list of unexplored nodes *)
while U 6= ∅ do
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choose a node NCG ∈ U ;
(* related marking of RTPN *)
m := marking(NCG);
(* related state of Ha *)
x := state(NCG);
(* related state of Hw *)
w := total state(NCG);
(* events triggered by actions in marked places *)
ΣA := actions(PN, m, NCG);
(* feasible events list *)
ΣF := Γ(x) ∩ (ΣSP ∪ ΣA);
for ∀σ ∈ ΣF do

w′ := (δ(x, σ), δu(u, σ), δv(v, σ));
newNCG := (m,w′);
if not a duplicate node then

CG.N := CG.N ∪ {newNCG};
CG.A := CG.A ∪ {(NCG, σ, newNCG)};
U := U ∪ {newNCG};

else
adjust connections of the duplicated node;

end
end
(* enabled transitions *)
TEN := getEnabledTransitions(PN, m);
(* condition-enabled transitions *)
TCEN := checkConditions(PN, TEN , NCG);
(* check if actions in the input places have been executed: *)
TACEN := checkActions(PN, TCEN , NCG);
(* transitions that may be triggered *)
for ∀t ∈ TACEN do

u := getFiringVector(PN, t);
(* calculate a new marking *)
m’ := m + (PN.O-PN.I) u;
newNCG := (m’, w);
if not a duplicate node then

CG.N := CG.N ∪ {newNCG};
CG.A := CG.A ∪ {(NCG, t, newNCG)};
U := U ∪ {newNCG};

else
adjust connections of the duplicated node;

end
end
(* remove the node from the list of unexplored nodes *)
U := U - {NCG};

end
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3.3 Complexity

The state size of the constructed C-reachability graph depends heavily on
the type and the properties of the process considered and the related oper-
ational procedure specification. However, some conclusions can be drawn by
considering a typical application.

First, it should be noted that the number of iterations of the main loop of
Algorithm 1 equals the number of nodes (states) in the C-reachability graph.
It is also known that the computational complexity of checking the various
individual properties, such as the absence of dead-locks, is linear in the size
of the state space [19]. The number of nodes in the C-reachability graph will,
therefore, be of primary concern.

Recalling the introduction of the C-reachability graph in Section 3.1, the nodes
of the graph are pairs (m,w), where m is a marking of the RTPN, while w is
the state of the total state automaton Hw. The first, very coarse estimate for
the number of nodes in the graph is then

Nnodes ≤ |R(NR, m0)| · |xHw| (3)

where |R(NR,m0)| is the number of possible markings in the RTPN, and |xHw|
is the number of states in the automaton Hw.

The number of nodes in the graph is typically most often related to the com-
plexity of the RTPN. This is because the related specification of the opera-
tional procedure extracts only a small subset of states from the admissible
behaviour model.

In the following, only the case where all the events in the admissible behaviour
model are related to I/O signals of the RTPN is considered. Furthermore, an
assumption that the number of states in the total state automaton Hw equals
the number of states in the admissible behaviour model Ha will be made. This
is true for the majority of applications of SCT to PLC programming. The
related interlock design deals with the prevention of the forbidden I/O signal
state combinations. When calculating the model of the admissible behaviour,
the focus is on distinguishing different I/O states and not different event or-
derings. Therefore, during the total state automaton calculation there is no
need to introduce new states. Instead, the description of the existing states of
the admissible behaviour is merely extended by the associated I/O states.

Using such an assumption, a better estimate for the number of nodes in the
graph can be obtained by taking possible combinations of the I/O signals at
a particular marking into account. At every marking, a set of new nodes in
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the C-reachability graph is generated, according to the switching of the I/O
signals. If the number of signals NS(m) that can switch at a particular marking
m is taken into account, and there is no information on their restrictions, all
the possible signal states are considered. The related number of nodes is then
2NS(m), and the estimate is

Nnodes ≤
∑

mi∈R(NR,m0)

2NS(mi) (4)

In practice, this number is smaller because certain combinations of signal
states are not allowed or not possible. Every interlock defined as a forbidden
combination of two signal states lowers the number of nodes by 1/4. Taking NI

such interlocks into account leads to an estimate of (3/4)NI2NS = 3NI2(NS−2NI)

nodes per marking. The total estimate is then

Nnodes ≤
∑

mi∈R(NR,m0)

3NI(mi) · 2(NS(mi)−2NI(mi)) (5)

where NI(mi) is the number of interlocks that apply at mi.

Clearly, only the proper estimation of Ns can give a useful result. The number
of output signals that can switch by a particular marking is known. It is given
by the number of actions at the marked places, i.e., the number of elements
in the union of Z(pi) for all the marked places. This union will be denoted by
Z(m). It is more difficult to estimate the number of possible events that are
not triggered by the RTPN. In Sect. 3.1 these events were denoted by ΣSP

(spontaneous events). A further look at equation (2) shows that Ns is actually
related to the number of elements in the union of all ΣF (x,m) at fixed m. Since
this is rather difficult to estimate, only the maximum number of spontaneous
events in a sequence at a given marking is estimated. Let ΣSP (m) denote
this estimate and let SSP (m) denote the I/O signals related to ΣSP (m). The
estimate of the upper bound for the number of nodes is then

Nnodes ≤
∑

mi∈R(NR,m0)

3NI(mi) · 2(|SSP (mi)|+|Z(mi)|−2NI(mi)) (6)

Finally, equation (6) can be simplified if the sequential specification is limited
to the class of safe Petri nets with no concurrency (state machines). The
number of possible markings in such a net equals the number of places. The
estimate, therefore, simplifies to

Nnodes ≤
∑

pi∈P

3NI(pi) · 2(|SSP (pi)|+|Z(pi)|−2NI(pi)) (7)

where NI(pi) is the number of interlocks that apply when pi is marked and
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|SSP (pi)| is the number of signals related to the spontaneous events that can
occur when pi is marked. |Z(pi)| is the number of elements in the output
function of pi.

While the estimate (4) is rather conservative, because all the signal state
combinations were considered, estimates (6) and (7) are relatively close to the
real number, in particular when a large number of interlocks are applied. The
latter two, on the other hand, require a deeper knowledge about the process
and control specifications. They are, therefore, more difficult to calculate.

To illustrate the C-reachability graph’s complexity, consider a typical small
PLC application, involving the control of four pneumatic devices, each equipped
with two sensors and driven by two electro-pneumatic valves. Eight interlocks
apply, because each pair of sensors cannot be activated simultaneously, and in
each pair of actuating signals, at most one can be switched on at a time. As-
suming a sequence of 10 steps, taking all the sensor readings as spontaneous
events at every step, allowing two actions per step, and imposing no addi-
tional restrictions besides interlocks on sensor readings (i.e., four interlocks
per step), the equation (6) gives an estimate of 3240 nodes in a corresponding
C-reachability graph. This number is quite manageable with the appropri-
ate computer support. Furthermore, the number of nodes is even smaller in
real applications, because additional restrictions on signal switchings apply.
For example, in [11] a small size practical application is reported, where the
complexity of the graph did not exceed 200 nodes.

4 Example

An example is given to illustrate the concept of the C-reachability graph,
which is simple enough to exhibit interesting properties, but at the same time
based on equipment used in industrial applications. The example deals with
part of a laboratory-scale modular production line composed of five working
stations controlled by five programmable logic controllers [12]. The stations
perform the distribution of workpieces, the testing of workpieces, processing,
manipulation and sorting. Every working station is further composed of a set of
pneumatic pistons, gears, two state sensors, and electro-pneumatic actuators,
which form a mechanical setup that can be controlled by a PLC to perform a
required operation.

The central part of the line is considered, i.e., the processing station, consisting
of a rotational table that moves a workpiece between consecutive phases, a
drilling machine, and a testing device. The next working station includes a
manipulator that transports the workpiece further on. The central part of the
production line is shown in Fig. 2.
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The setup is similar to the one used in [15], except that a much closer view
of the process is taken in this paper. In [15] the SCT is used to coordinate
the operating phases, while the example presented here deals with the control
logic inside a particular phase. The switching of I/O signals in the desired
operating procedures is modelled, as is the behaviour relating to erroneous
conditions in the process.

To keep the presentation sufficiently simple, a particular detail will be studied,
i.e., the interlock between the rotating table and the holder that fixes the
workpiece before it is drilled. The table is driven by an electric motor, which
is rotating when signal ar = 1. When the signal is switched on, event ar1 is
generated. Similarly, when the signal is switched off, event ar0 is generated.
The same labelling scheme is used for all the events related to the I/O signals in
the modelled process. The prefix of the event label matches the corresponding
signal label, while the suffix indicates the direction of the signal switching.

The table has four stop positions, indicated by a proximity switch sp. The
switch closes (sp1) when the table comes into position, and releases (sp0)
when the position is left. For the example, only the switching of the actuator
ar is considered. The simplified finite-state machine model of the table is
shown in Fig. 3.

The holding piston is driven by an electro-pneumatic valve switching the pres-
sure on and off. Initially, the piston is in the forward position, and it moves
backwards when ah = 1 and forwards when ah = 0. The piston is equipped
with two limit switches, indicating the backward (sb) and forward (sf) posi-
tions. The movement is limited to the distance between the two limit switches.
Only one of the two switches (sb) is used in the example. The simplified finite-
state machine model of the piston is shown in Fig. 4. An interesting feature
of the piston is that it moves forwards in the case of a loss of supply pressure.
Since the piston must be moved backwards before the table can start rotat-
ing, the potential loss of pressure represents an interesting problem from the

T e s t i n g P r o c e s s i n g

R o t a t i n g
t a b l e

H o l d i n g
p i s t o n

Figure 2. Part of the production line
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X0 X1

ar1

ar0

Figure 3. Model of the rotating table

X0 X3

X1 X2

ah1

ah0

sb1

sb0

ah0

ah1

sb0

Figure 4. Model of the piston

S0 S1

S2 S3

S4

sb1

sb0

ar1
ar0

sb1

sb0

ar0

ah0

sb0

ah1, ah0

Figure 5. Table - piston interlock specification

control-design viewpoint.

To maintain the interlock between the table and the piston the behaviour
represented by the automaton in Fig. 5 is imposed. The start of the table’s
rotation (ar1) is only allowed when the piston is drawn back, i.e., after sb1.
If the supply pressure is lost, this would result in the forward movement of
the piston and the event sb0 would be generated. Then, the only allowed
action is to stop the rotation (ar0). (The requirement to immediately force the
rotation stop cannot be carried out by the supervisor.) Another requirement
that is imposed by the automaton in Fig. 5 is to prevent the controlled forward
movement of the piston (ah0) while the table is rotating.

The specification is controllable and results in the admissible behaviour of the
process, as shown in Fig. 6

Next, an operational procedure for the process is imposed. An example of the
procedural specification is shown in Fig. 7. The interpretation of the places
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A1 A2 A6

ah1

ah0

ar0

sb0 sb0

sb1

sb0

sb1

ah0
ar1

ar0

Figure 6. Admissible behaviour

Figure 7. Specification of the operational procedure

and transitions is given in Tables 1 and 2. In the specified procedure, the
operation is initiated by an external start signal. Then the piston is drawn back
and afterwards the controller waits for another external signal (cycle), which
initiates a cyclic operation. During the cycle, the table first starts rotating
and when the position is reached, the piston is released in order to fix the
workpiece in position. Next, the piston is drawn back again to release the
workpiece and the controller returns to the wait state. If the signal cycle is
set, the cycle repeats. The transition t7 models a failure when the piston’s
position is changed during the table’s movement, and the table must stop
rotating immediately.

A RTPN defined in this way is verified against the previously derived open-
loop process model. The initial states of the input signals that are not part
of the admissible behaviour model can be left undefined or can be fixed at a
specific value. In our case the signals ack and sp are set undefined, while start
and cycle are assumed to be 1. The initial position of the piston is assumed
to be in front (sb = 0). The initial state of all the output signals is assumed
to be 0.

For the given case the constructed C-reachability graph consists of 12 nodes
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Table 1
RTPN transition conditions
Y (t1)=start

Y (t2)=sb

Y (t3)=cycle

Y (t4)=sp AND NOT ah

Y (t5)=NOT ar

Y (t6)=sb

Y (t7)=NOT sb

Y (t8)=ack AND NOT sb

legend:

ack - error acknowledgement

cycle - start of the cycle

sb - back position sensor

sp - table position sensor

start - start of operation

and 17 transitions, and is shown in Fig. 8. An analysis of the graph shows
the system operation is blocking after place p4 is marked. This is because an
attempt has been made to switch the ah signal off while the table is rotating.
The supervisor blocks the required action and since the transition condition
of t4 implies that ah must be switched off before the transition is triggered,
the operation is deadlocked.

X1, 1 X2, 1

X2, 2 X2, 3

X3, 2 X3, 3

X4, 2 X4, 3 X4, 4 X4, 6

X4, 1 X4, 5

t1

ah1

sb1

sb0

t2

sb1

sb0

t3 t3

sb1

sb0

ar1

sb0

sb1

ah0 ah0

sb0

Figure 8. C-reachability graph with deadlock
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Table 2
RTPN place actions

Z(p1)={(l start, 1),(l error, 0)}
Z(p2)={(l start, 0),(ah, 1)}
Z(p3)=∅
Z(p4)={(ar, 1),(ah, 0)}
Z(p5)={(ar, 0)}
Z(p6)={(ah, 1)}
Z(p7)={(l error, 1),(ah, 0),(ar, 0)}
legend:

l start - initial st. indicator

l error - error indicator

ah - activate the piston

ar - table rotation

Table 3
Corrected RTPN transition conditions
Y (t1)=start

Y (t2)=sb

Y (t3)=cycle

Y (t4)=sp

Y (t5)=NOT sb AND NOT ar

Y (t6)=sb

Y (t7)=NOT sb

Y (t8)=ack AND NOT sb

To overcome the error, the specification is modified according to Tables 3 and
4. The newly constructed C-reachability graph consists of 25 nodes and 41
transitions, and is shown in Fig. 9. It is clear that the automaton can reach
the initial state from any reachable state and that every transition of the
RTPN occurs at least once as an event label in the graph. The application
of the Propositions 1 and 2 on the graph, therefore, shows that the system
operation is now deadlock free and C-live.

For the application of the estimate of the number of nodes for the given case,
an estimate of the number of spontaneous events at every marking is needed
first. In this case the task is relatively simple, since there are only two spon-
taneous events, sb0 and sb1, which are both related to a single input signal
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Table 4
Corrected RTPN place actions

Z(p1)={(l start, 1),(l error, 0)}
Z(p2)={(l start, 0),(ah, 1)}
Z(p3)=∅
Z(p4)={(ar, 1)}
Z(p5)={(ar, 0),(ah, 0)}
Z(p6)={(ah, 1)}
Z(p7)={(l error, 1),(ah, 0),(ar, 0)}

(the events related to the signals ack, cycle, sp and start are not part of the
admissible behaviour model and are not taken into account). Furthermore, no
spontaneous events can occur during the initial marking (m0(p1) = 1). By also
taking into consideration the RTPN output function, and again considering
only events that take part in the model of the admissible behaviour, (4) gives
an estimate of 31 for the number of nodes in the graph. Obviously, this is only
a rather coarse estimate of the real number. If the interlock between ar1 and
ah0 is taken into account, which applies when p5 or p7 is marked, (7) gives
an estimate of 27, which is very close to the actual number of nodes in the
constructed C-reachability graph for the given case.

5 Conclusions and future work

The algorithm for the calculation of the C-reachability graph presented in
the paper enables a detailed analysis of the potential deadlock in discretely
controlled processes. The prerequisite is that a discrete-event model of the
plant should be available. Such a model can be easily obtained when the
interlock layer is designed using the supervisory control theory, which gives a
model of the admissible behaviour.

The potential applicability of the algorithm is limited by the complexity of
the graph. Therefore, an estimate of the number of nodes in the graph was
given. The proposed calculation makes it possible to estimate whether the
construction of the graph is feasible. The exploration of techniques for the
reachability analysis that do not involve the explicit enumeration of the state
space is planned in a future work.

The combined synthesis/verification approach proposed, makes possible a rel-
atively high level of automation of the control synthesis for manufacturing
systems. Once the model of the plant and the specification models are devel-
oped an appropriate computer tool can perform all the necessary calculations
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ar1
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t5

ah1

sb1

sb0

t6

sb0

ah0 ah0

sb1

sb0

ar0 ar0

sb1

sb0
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Figure 9. C-reachability graph for the corrected case

and even generate the control code. Only a small amount of additional pro-
gramming is then needed to obtain an operating logic controller.
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D. Matko, Combined synthesis/verification approach to programmable logic
control of a production line, in: Preprints of the 16th IFAC World Congress,
IFAC, Prague, Czech Republic, 2005.
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